Effects of Ulva prolifera Degradation on Growth Performance and Antioxidant Capacity of Japanese Flounder (Paralichthys olivaceus) Family

Author:

Yang Yingming12,Li Wenlong1,Wang Run1,Xu Dan3,Chen Yadong12,Cui Zhongkai12,Chen Songlin12

Affiliation:

1. State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China

2. Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Laoshan Laboratory for Marine Science and Technology, Qingdao 266235, China

3. School of Ocean, Yantai University, Yantai 264005, China

Abstract

Massive macroalgae blooms, primarily caused by the overgrowth of Ulva prolifera (U. prolifera) in the Yellow Sea of China, pose a severe risk to both marine organisms and the aquaculture industry. This study’s aim was to evaluate the impact of U. prolifera degradation on the growth performance and antioxidant capacity of Japanese flounder (Paralichthys olivaceus) and select some potential Japanese flounder families (labeled 2101–2108, established by crossbreeding) tolerating U. prolifera degradation conditions. Thus, a 60-day U. prolifera exposure experiment was conducted. The results showed that the contents of Na, K, Mg, and Fe elements in the U. prolifera degradation water were significantly increased. The specific growth rate and survival rate of flounder were significantly decreased under the U. prolifera degradation condition, while the 2101 and 2103 flounder families showed a better growth performance compared with the positive control (PC) group. Moreover, the results showed that activities of total antioxidant capacity (T-AOC), transaminases, and alkaline phosphatase (AKP) in serum were significantly decreased, while the 2103 flounder family showed higher activities. Furthermore, U. prolifera degradation significantly increased superoxide dismutase (SOD) activity and glutathione (GSH) content while decreasing catalase (CAT) activity and malondialdehyde (MDA) content in the liver. Specifically, SOD and CAT activities of the 2103 flounder family were higher than the 2101 flounder family and PC group. In addition, the gill SOD and CAT activities of the 2103 flounder family were significantly higher than the PC group. Similarly, the antioxidant-related gene (sod and cat) expressions were synchronously upregulated or downregulated in the liver and gills in response to U. prolifera degradation. These results revealed that U. prolifera degradation decreased the growth performance and influenced the antioxidant capacity of Japanese flounder, while the 2103 flounder family had better advantages in the U. prolifera degradation condition. Therefore, the 2103 flounder family could be regarded as the potential flounder family tolerating U. prolifera degradation. The increased Fe content in the U. prolifera degradation water may be one of the main causes of the physiological alterations observed in Japanese flounder.

Funder

Central Public-interest Scientific Institution Basal Research Fund, CAFS

Key Research and Development Project of Shandong Province

Taishan Scholar Climbing Project Fund of Shandong, China

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3