Advanced Robotic System with Keypoint Extraction and YOLOv5 Object Detection Algorithm for Precise Livestock Monitoring

Author:

Natesan Balaji1ORCID,Liu Chuan-Ming2ORCID,Ta Van-Dai3ORCID,Liao Raymond4

Affiliation:

1. International Graduate Program of College of Electrical Engineering and Computer Science, National Taipei University of Technology, Taipei City 106, Taiwan

2. Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei City 106, Taiwan

3. Samsung Display Vietnam (SDV), Yen Phong Industrial Park, Bac Ninh 16000, Vietnam

4. Yuanshang Technology Co., Ltd., New Taipei 242, Taiwan

Abstract

Molting is an essential operation in the life of every lobster, and observing this process will help us to assist lobsters in their recovery. However, traditional observation consumes a significant amount of time and labor. This study aims to develop an autonomous AI-based robot monitoring system to detect molt. In this study, we used an optimized Yolov5s algorithm and DeepLabCut tool to analyze and detect all six molting phases such as S1 (normal), S2 (stress), S3–S5 (molt), and S6 (exoskeleton). We constructed the proposed optimized Yolov5s algorithm to analyze the frequency of posture change between S1 (normal) and S2 (stress). During this stage, if the lobster stays stressed for 80% of the past 6 h, the system will assign the keypoint from the DeepLabCut tool to the lobster hip. The process primarily concentrates on the S3–S5 stage to identify the variation in the hatching spot. At the end of this process, the system will re-import the optimized Yolov5s to detect the presence of an independent shell, S6, inside the tank. The optimized Yolov5s embedded a Convolutional Block Attention Module into the backbone network to improve the feature extraction capability of the model, which has been evaluated by evaluation metrics, comparison studies, and IoU comparisons between Yolo’s to understand the network’s performance. Additionally, we conducted experiments to measure the accuracy of the DeepLabCut Tool’s detections.

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3