The Effect of Dietary Lipid Supplementation on the Serum Biochemistry, Antioxidant Responses, Initial Immunity, and mTOR Pathway of Juvenile Tilapia (Oreochromis niloticus)

Author:

Liu Yongqiang123ORCID,Huang Enhao123,Xie Yi123,Meng Liuqing123,Liu Dongsheng123,Zhang Ziqi123,Zhou Jiang123,Zhang Qin123,Tong Tong123

Affiliation:

1. Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning 530008, China

2. Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Guangxi Minzu University, Nanning 530008, China

3. School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China

Abstract

The objectives of this study were to investigate the effect of different dietary lipid levels on the serum biochemistry, antioxidant responses, initial immunity, and mTOR pathway of juvenile genetic improvement-farmed tilapia (GIFT, Oreochromis niloticus). Six groups of the juveniles (initial body weight 20.66 ± 1.33 g) in triplicate were fed for 90 days using six iso-nitrogen diets with different lipid levels (0.35%, 3.35%, 6.35%, 9.35%, 12.35%, and 15.35%). The main results were as follows: Compared with the control group (0.35%), the diets with different lipid supplementation significantly improved (p < 0.05) the contents of total protein (TP), albumin (ALB), globulin (GLB), glucose (GLU), triglyceride (TG), total cholesterol (T-CHO), high-density lipoprotein (HDL), low-density lipoprotein (LDL), total antioxidant capacity (T-AOC), malondialdehyde (MDA), complement 3 (C3), and immunoglobulin M (IgM), the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), lysozyme (LYZ), and alkaline phosphatase (ALP), the expression level of phosphatidylinositol-3-kinase (PI3K), Akt protein kinase B (Akt), and mammalian target of rapamycin (mTOR) genes in juvenile tilapia. However, diets with different lipid supplementation significantly reduced (p < 0.05) the expression level of tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) genes of juvenile tilapia. In conclusion, the with different lipid supplementation could significantly affect the serum biochemistry, antioxidant responses, initial immunity, and mTOR pathway of juvenile tilapia.

Funder

grants from the Scientific Research Foundation for the Introduced Talents of Guangxi Minzu University

the Research Capacity Enhancement Project for Young and Middle-aged Teachers in Guangxi Universities

the Joint Funds of the National Natural Science Foundation of China

the Shandong Provincial Key Research and Development Programs

the Innovation-driven Development Special Fund Project of Guangxi

the Grants from the Scientific Research Foundation for the Introduced Talents of Guangxi Minzu University

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3