Development of an Oxide Layer on Al 6061 Using Plasma Arc Electrolytic Oxidation in Silicate-Based Electrolyte

Author:

Jadhav PriyaORCID,Bongale ArunkumarORCID,Kumar SatishORCID,Pimenov Danil YurievichORCID,Giasin KhaledORCID,Wojciechowski SzymonORCID

Abstract

The plasma electrolytic method is one of the techniques which can be used to form an oxide layer on the substrate material surface. This technique employs ion exchange by developing an electrolytic arc between the cathode and the anode. The strong bond at high temperatures promotes the formation of an oxide layer on the metal surface. The electrolyte composition has a strong influence on the metal surface characteristics. Hence, the addition of certain nanoparticles in an adequate amount can improve the surface properties like wear and corrosion resistance. In this study, a plasma electrolytic technique based on using a direct current and voltage approach is investigated. The plasma electrolytic technique is utilized to develop an oxide layer on the Al 6061 alloy substrate surface using a DC voltage input on a silicate-based electrolyte. The substrate surface is then investigated for the thickness of the oxide layer formed and the amount of carbon element absorbed, using the SEM and XRD analysis. The experimentation and the study of the results confirmed the presence of a substantial oxide layer on the surface. The influence of the process on the output parameters-direct voltage and electrode distance is studied with the significant changes obtained in the weight percentage of elements like C, Al, Si, and O as supported by SEM and EDAX analysis. Most changes occurred when using a 197 V and in the current range of 0.3 A to 1 A. This can be useful further to improve the mechanical properties of the metal alloy using the plasma arc oxidation method.

Funder

Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3