A Preliminary Study of the Seepage Hammer Effect and Its Impacts on the Stability of Layered Infinite Slope

Author:

Lee Wei-Lin1ORCID,Tai Yih-Chin2ORCID,Shieh Chjeng-Lun2,Lu Chih-Wei3

Affiliation:

1. National Science and Technology Center for Disaster Reduction, New Taipei City 23143, Taiwan

2. Department of Hydraulic and Ocean Engineering, National Cheng Kung University, Tainan 70403, Taiwan

3. Department of Civil and Construction Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan

Abstract

A rapid change in the pore water pressure of unsaturated soil due to a wetting front is a crucial factor and may result in instabilities in layered slopes. This study presents preliminary research on such a change, which we define as the seepage hammer effect. Vertical infiltration with multiple soil layers by column test was implemented to investigate the mechanism of the seepage hammer effect and distinguish it from the well-known Lisse effect and reverse Wieringermeer effect. A two-phase flow model was utilized to understand the evolutions of pore water/air pressure and volumetric water content, and its result evolved into a layered infinite slope stability analysis. Thus, the impacts of the seepage hammer effect on slope stability can be analyzed. This study found that the seepage hammer effect was triggered when the wetting front reached the interface of multiple layers and impermeable layers, and the rising speed of pore water pressure was proportional to the air venting capacity of soil. Slope stability analysis showed that the safety factor may decline suddenly because of the seepage hammer effect. Its relationship with the factor of safety and the sliding velocity is proportional. The detection of the seepage hammer effect could be a potential application of the study of fast-moving landslides.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3