A Review of Tunable Orbital Angular Momentum Modes in Fiber: Principle and Generation

Author:

Feng Lipeng,Li Yan,Wu Sihan,Li Wei,Qiu Jifang,Guo Hongxiang,Hong Xiaobin,Zuo Yong,Wu Jian

Abstract

Orbital angular momentum (OAM) beams, a new fundamental degree of freedom, have excited a great diversity of interest due to a variety of emerging applications. The scalability of OAM has always been a topic of discussion because it plays an important role in many applications, such as expanding to large capacity and adjusting the trapped particle rotation speed. Thus, the generation of arbitrary tunable OAM mode has been paid increasing attention. In this paper, the basic concepts of classical OAM modes are introduced firstly. Then, the tunable OAM modes are categorized into three types according to the orbital angular momentums and polarization states of mode carrying. In order to understand the OAM evolution of a mode intuitively, three kinds of Poincaré spheres (PSs) are introduced to represent the three kinds of tunable OAM modes. Numerous methods generating tunable OAM modes can be roughly divided into two types: spatial and fiber-based generation methods. The principles of fiber-based generation methods are interpreted by introducing two mode bases (linearly-polarized modes and vector modes) of the fiber. Finally, the strengths and weaknesses of each generation method are pointed out and the key challenges for tunable OAM modes are discussed.

Funder

Beijing University of Posts and Telecommunications

National Natural Science Foundation Committee of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3