Electrowetting on Dielectric (EWOD) Device with Dimple Structures for Highly Accurate Droplet Manipulation

Author:

Mogi Katsuo,Adachi ShungoORCID,Takada NaokiORCID,Inoue Tomoya,Natsume Tohru

Abstract

Digital microfluidics based on electrowetting on dielectric (EWOD) devices has potential as a fundamental technology for the accurate preparation of dangerous reagents, the high-speed dispensing of rapidly deteriorating reagents, and the fine adjustment of expensive reagents, such as the preparation of for positron emission tomography (PET). To allow single substrate type EWODs to be practically used in an automatic operation system, we developed a dimple structure as a key technique for a highly accurate droplet manipulation method. The three-dimensional shape of the dimple structure is embossed onto a disposable thin sheet. In this study, we confirmed that the dimple structure can suppress unintended droplet motion caused by unidentified factors. In addition, the stability of the droplets on the dimple structures was evaluated using a sliding experiment. On a flat substrate, the success rate of a droplet motion was lower than 70.8%, but on the dimple structure, the droplets were able to be moved along the dimple structures correctly without unintended motion caused by several environmental conditions. These results indicated that the dimple structure increased the controllability of the droplets. Hence, the dimple structure will contribute to the practical application of digital microfluidics based on single substrate type EWODs.

Funder

the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for young scientists

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3