Adaptive Refinements of Pitch Tracking and HNR Estimation within a Vocoder for Statistical Parametric Speech Synthesis

Author:

Al-Radhi Mohammed SalahORCID,Csapó Tamás Gábor,Németh GézaORCID

Abstract

Recent studies in text-to-speech synthesis have shown the benefit of using a continuous pitch estimate; one that interpolates fundamental frequency (F0) even when voicing is not present. However, continuous F0 is still sensitive to additive noise in speech signals and suffers from short-term errors (when it changes rather quickly over time). To alleviate these issues, three adaptive techniques have been developed in this article for achieving a robust and accurate F0: (1) we weight the pitch estimates with state noise covariance using adaptive Kalman-filter framework, (2) we iteratively apply a time axis warping on the input frame signal, (3) we optimize all F0 candidates using an instantaneous-frequency-based approach. Additionally, the second goal of this study is to introduce an extension of a novel continuous-based speech synthesis system (i.e., in which all parameters are continuous). We propose adding a new excitation parameter named Harmonic-to-Noise Ratio (HNR) to the voiced and unvoiced components to indicate the degree of voicing in the excitation and to reduce the influence of buzziness caused by the vocoder. Results based on objective and perceptual tests demonstrate that the voice built with the proposed framework gives state-of-the-art speech synthesis performance while outperforming the previous baseline.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference73 articles.

1. Spoken Language Processing;Huang,2001

2. A robust algorithm for pitch tracking (RAPT);Talkin,1995

3. Continuous F0 modelling for HMM based statistical parametric speech synthesis;Kai;IEEE Trans. Audio Speech Lang. Process.,2011

4. Pitch pattern generation using multi-space probability distribution HMM;Masuko;IEICE Trans. Inf. Syst.,2000

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3