Gradual Meso-Structural Response Behaviour of Characteristics of Asphalt Mixture Main Skeleton Subjected to Load

Author:

Shi LiwanORCID,Yang Zhen,Wang Duanyi,Qin Xiao,Xiao Xin,Julius Masley Kwaku

Abstract

In order to provide a reference for the gradation design of dense skeleton asphalt mixtures (DSAM), this study conducts a thorough analysis of the gradual meso-structural response behaviour of characteristics of the asphalt mixture main skeleton subjected to load using the digital image processing (DIP) technique. Moreover, gradation optimisation measures and the design criteria of mesoscopic evaluation indices for the main skeleton are proposed. The results indicate that aggregates with particle sizes of 2.36–4.75 mm can effectively increase the number of contact points; however, the stability of the main skeleton remains insufficient. Furthermore, coarse aggregates with a particle size larger than 4.75 mm provide the most significant contribution to the formation of a steady main skeleton; this is the critical particle size for the formation of a steadier main skeleton. Gradation is the major determinant of mesoscopic evaluation indices, including average coordination number ( n ¯ c ) and the ratio of the quantity of coarse aggregates without contact points to the total quantity of coarse aggregates (C value) for the asphalt mixture of the main skeleton. On the other hand, the performance of asphalt has an insignificant influence on mesoscopic evaluation indices; it mainly affects the development trend of macroscopic rutting. In the design process of DSAM, it is necessary to optimise gradation with the aim of increasing n ¯ c and reducing the C value so as to enhance the load resistance capacity of the primary skeleton. When preparing asphalt mixture specimens using the wheel rolling method, the design criteria for the aforementioned indices are n ¯ c ≥ 1.5 and C ≤ 15%, which can be used as bases for the design of DSAM with a nominal maximum particle size of 13.2 mm to ensure that the coarse aggregates are interlocked and form a steady main skeleton.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3