The Combined Effect of Alcohols and Calophyllum inophyllum Biodiesel Using Response Surface Methodology Optimization

Author:

Aneeque Mohammed,Alshahrani Saad,Kareemullah Mohammed,Afzal AsifORCID,Saleel C. AhamedORCID,Soudagar Manzoore Elahi M.ORCID,Hossain NaziaORCID,Subbiah RamORCID,Ahmed Mohamed H.

Abstract

In this experimental study, the performance of the diesel engine was analyzed for biodiesel derived from Calophyllum inophyllum. The impact of the addition of additives such as N-octanol and N-butanol with Calophyllum inophyllum biodiesel has been assessed. Impact of the application of hybrid N-octanol and N-butanol with biodiesel on emission profile used for the engine performance has also been demonstrated. Response surface analysis of alcohol additives-biodiesel blend was performed separately in this study for the engine efficiency and emission profile. A combination of N-octanol and N-butanol presented the highest brake thermal efficiency (BTE) and lowest carbon monoxide (CO) emission among the ternary blends of octanol. N-butanol-biodiesel blend presented the lowest hydrocarbon (HC) emission among the blends of N-butanol. N-octanol with 5 and 10% addition with biodiesel showed the lowest HC emissions among the blends of octanol. The response surface methodology (RSM) optimization revealed that the optimized thermal efficiency and emission were obtained at full load and minimum load, respectively. The addition of N-octanol hindered the emission at all loads, while N-butanol reduced it at higher loads. A strong correlation between the load and alcohol additives on the engine performance and emission profile has been obtained using the RSM optimization approach. The R-squared value obtained from the RSM was 0.92 and emission profile has been characterized.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3