Mapping of Maximum and Minimum Inundation Extents in the Amazon Basin 2014–2017 with ALOS-2 PALSAR-2 ScanSAR Time-Series Data

Author:

Rosenqvist Jessica,Rosenqvist Ake,Jensen KatherineORCID,McDonald KyleORCID

Abstract

Seasonal inundation is an important effect that governs the distribution of ecosystems in the tropics. In the Amazon Basin, the seasonal flood pulse causes a difference in high and low water levels that can exceed 15 m. The associated flood duration and extent play an important role in land-atmosphere carbon exchange and affect the ecosystem’s carbon pool that originates from organic matter transported from upland and flooded forests. Studies of wetlands inundation across the Amazon Basin have utilized dual season mosaics from JERS-1 and wide-swath ScanSAR data from ALOS PALSAR to characterize inundation across the basin. This study builds upon past efforts with JERS-1 and ALOS PALSAR and uses ALOS-2 PALSAR-2 ScanSAR data to generate annual maximum and minimum inundation extent maps over the full Amazon Basin for the period spanning November 2014–October 2017. The study uses decision tree classification to create a maximum and a minimum inundation extent map for each year over this time period. The results show that a generalized algorithm that fits the entire basin has an 86% overall accuracy compared with a classification made for a local region from the same PALSAR-2 datasets. Comparisons with previous full-basin inundation maps by other L-band radars shows similar results for inundated areas during maximum inundation. The maps derived previously from JERS-1 and ALOS PALSAR show 7.3% and 6.9% inundated vegetation, respectively, and this study using PALSAR-2 shows values ranging between 5.5% and 7.0% across the three study years. Comparisons between the stage data across the basin and acquisition dates/periods for JERS-1 and PALSAR-2 show that the sensors capture the nature of the maximum and minimum flooding across the basins but have not successfully captured the exact maximum and minimum flood levels that have been recorded in the stage data. The inundation maps are publicly available under a Creative Commons (CC BY 4.0) licensefrom the Alaska Satellite Facility.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference27 articles.

1. The flood pulse concept in river-floodplain systems;Junk;Can. Spec. Publ. Fish. Aquat. Sci.,1989

2. Amazonian Floodplain Frests: Ecophysiology, Biodiversity and Sustainable Management;Junk,2010

3. Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data

4. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2

5. Use of Seasat Satellite Radar Imagery for the Detection of Standing Water Beneath Forest Vegetation;MacDonald,1981

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3