Urban Heat Island Monitoring and Impacts on Citizen’s General Health Status in Isfahan Metropolis: A Remote Sensing and Field Survey Approach

Author:

Mirzaei MohsenORCID,Verrelst JochemORCID,Arbabi Mohsen,Shaklabadi Zohreh,Lotfizadeh Masoud

Abstract

Urban heat islands (UHIs) are one of the urban management challenges, especially in metropolises, which can affect citizens’ health and well-being. This study used a combination of remote sensing techniques with field survey to investigate systematically the effects of UHI on citizens’ health in Isfahan metropolis, Iran. For this purpose, the land surface temperature (LST) over a three-year period was monitored by Landsat-8 satellite imagery based on the split window algorithm. Then, the areas where UHI and urban cold island (UCI) phenomena occurred were identified and a general health questionnaire-28 (GHQ-28) was applied to evaluate the health status of 800 citizens in terms of physical health, anxiety and sleep, social function, and depression in UHI and UCI treatments. The average LST during the study period was 45.5 ± 2.3 °C and results showed that the Zayandeh-Rood river and the surrounding greenery had an important role in regulating the ambient temperature and promoting the citizens’ health. Citizens living in the suburban areas were more exposed to the UHIs phenomena, and statistical analysis of the GHQ-28 results indicated that they showed severe significant (P < 0.05) responses in terms of non-physical health sub-scales (i.e., anxiety and sleep, social functioning, and depression). Therefore, it can be concluded that not all citizens in the Isfahan metropolis are in the same environmental conditions and city managers and planners should pay more attention to the citizens living in the UHIs. The most important proceedings in this area would be the creation and development of parks and green belts, as well as the allocation of health-medical facilities and citizen education.

Funder

European Research Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3