Integrating Landsat-8 and Sentinel-2 Time Series Data for Yield Prediction of Sugarcane Crops at the Block Level

Author:

Rahman Muhammad MoshiurORCID,Robson AndrewORCID

Abstract

Early prediction of sugarcane crop yield at the commercial block level (unit area of a single crop of the same variety, ratoon or planting date) offers significant benefit to growers, consultants, millers, policy makers, crop insurance companies and researchers. This current study explored a remote sensing based approach for predicting sugarcane yield at the block level by further developing a regionally specific Landsat time series model and including individual crop sowing (or previous seasons’ harvest) date. For the Bundaberg growing region of Australia this extends over a five months period, from July to November. For this analysis, the sugarcane blocks were clustered into 10 groups based on their specific planting or ratoon commencement date within the specified five months period. These clustered or groups of blocks were named ‘bins’. Cloud free (<20%) satellite data from the polar-orbiting Landsat-8 (launched 2013), Sentinel-2A (launched 2015) and Sentinel-2B (launched 2017) sensors were acquired over the cane growing region in Bundaberg (area of 32,983 ha), from the growing season starting in July 2014, with the average green normalised difference vegetation index (GNDVI) derived for each block. The number of images acquired for each season was defined by the number of cloud free acquisitions. Using the Simple Linear Machine Learning (ML) algorithm, the extracted Landsat derived GNDVI values for each of the blocks were converted to Sentinel GNDVI. The average GNDVI of each ‘bin’ was plotted and a quadratic model was fitted through the time series to identify the peak growth stage defined as the maximum GNDVI value. The model derived maximum GNDVI values for each of the bins were then regressed against the average actual yield (t·ha-1) achieved for the respective bin over the five growing years, producing strong correlations (R2 = 0.92 to 0.99). The quadratic curves developed for the different bins were shifted according to the specific planting or ratoon date of an individual block allowing for the peak GNDVI value of the block to be calculated, regressed against the actual block yield (t·ha-1) and the prediction of yield to be made. To validate the accuracies of the 10 time series algorithms representing each of the 10 bins, 592 individual blocks were selected from the Bundaberg region during the 2019 harvest season. The crops were clustered into the appropriate bins with the respective algorithm applied. From a Sentinel image acquired on the 5 May 2019, the prediction accuracies were encouraging (R2 = 0.87 and RMSE = 11.33 (t·ha-1)) when compared to actual harvested yield, as reported by the mill. The results presented in this paper demonstrate significant progress in the accurate prediction of sugarcane yield at the individual sugarcane block level using a remote sensing, time-series based approach.

Funder

Sugar Research Australia

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3