Assessing the Impact of the Farakka Barrage on Hydrological Alteration in the Padma River with Future Insight

Author:

Islam Abu Reza Md. TowfiqulORCID,Talukdar SwapanORCID,Akhter Shumona,Eibek Kutub Uddin,Rahman Md. MostafizurORCID,Pal Swades,Naikoo Mohd WaseemORCID,Rahman Atiqur,Mosavi AmirORCID

Abstract

Climate change and human interventions (e.g., massive barrages, dams, sand mining, and sluice gates) in the Ganga–Padma River (India and Bangladesh) have escalated in recent decades, disrupting the natural flow regime and habitat. This study employed innovative trend analysis (ITA), range of variability approach (RVA), and continuous wavelet analysis (CWA) to quantify the past to future hydrological change in the river because of the building of the Farakka Barrage (FB). We also forecast flow regimes using unique hybrid machine learning techniques based on particle swarm optimization (PSO). The ITA findings revealed that the average discharge trended substantially negatively throughout the dry season (January–May). However, the RVA analysis showed that average discharge was lower than environmental flows. The CWA indicated that the FB has a significant influence on the periodicity of the streamflow regime. PSO-Reduced Error Pruning Tree (REPTree) was the best fit for average discharge prediction (RMSE = 0.14), PSO-random forest (RF) was the best match for maximum discharge (RMSE = 0.3), and PSO-M5P (RMSE = 0.18) was better for the lowest discharge prediction. Furthermore, the basin’s discharge has reduced over time, concerning the riparian environment. This research describes the measurement of hydrological change and forecasts the discharge for upcoming days, which might be valuable in developing sustainable water resource management plans in this location.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3