Calculation of the Height of the Water-Conducting Fracture Zone Based on the Analysis of Critical Fracturing of Overlying Strata

Author:

Tan Yi,Cheng Hao,Lv Wenyu,Yan Weitao,Guo Wenbing,Zhang Yujiang,Qi Tingye,Yin Dawei,Wei Sijiang,Ren Jianji,Xin Yajun

Abstract

Accurate division of the water-conducting fracturing zone (WCFZ) in the mining overburden serves as an important basis to evaluate the stability of coal mining under water bodies. Research on the WCFZ is conducive to controlling surface subsidence and realizing safe coal mining under water. Traditionally, the WCFZ is generally determined by field observation (liquid leakage method, borehole television, etc.) or empirical formula. Although these methods boast high accuracy, they are time-consuming and laborious and have some problems such as weak pertinence and a large value range. In this study, a mechanical model under the critical breakage condition of hard and soft strata was established on the basis of the specific geological and mining information of a mine. Besides, the stability condition for the broken strata to form the “masonry beam” structure and the deflection-based bending deformation formula of hard and soft strata were deduced, and the method of calculating the height of WCFZ based on the analysis of critical fracturing of soft and hard strata (hereafter referred to as the CFSHS-based height calculation method) was proposed. Furthermore, with reference to the results of specific engineering tests, the height of the WCFZ in the working face 15,101 of coal mine XJ was analyzed by means of theoretical analysis, numerical simulation and engineering verification, which verifies the rationality and practicability of the CFSHS-based height calculation method.

Funder

National Natural Science Foundation of China

Support Plan for Science&Technology Innovation Talents in Universities of Henan Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference33 articles.

1. Coal Mine Ground Control;Peng,1978

2. Mining Subsidence Engineering;Kratzsch,1983

3. Mining subsidence ? past, present, future

4. Actuality and developing trend of long wall top coal caving mining under water;Kang;Coal Min. Technol.,2003

5. On-Site Measurement on Surface Disturbance Law of Repeated Mining with High Relief Terrain

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3