Assessing the Water-Resources Potential and Soil Erosion Hotspot Areas for Sustainable Land Management in the Gidabo Watershed, Rift Valley Lake Basin of Ethiopia

Author:

Dananto Mihret,Aga Alemu O.ORCID,Yohannes PetrosORCID,Shura LamisoORCID

Abstract

For development of a comprehensive sediment management plan, it is crucial to categorize watersheds on the basis of soil erosion hotspot areas to extend the useful life of water bodies (e.g., Gidam reservoir). The goal of this study was to assess the surface water potential and identify erosion hotspot areas of the Gidabo watershed in Ethiopia using the Soil and Water Assessment Tool (SWAT) model. The SUFI-2 (Sequential Uncertainty Fitting Version 2) program was used to calibrate the model, and the model’s performance was evaluated. According to the catchment prioritization analysis, some of the sub-basins with similar land use, land cover, and soil type but with higher slope would generate higher sediment yield. Furthermore, the soil conservation scenarios were developed in SWAT, and the model result showed that average annual sediment yield could be reduced by the application of grassed waterway, filter strips, terracing, and contouring by 49%, 37.53%, 62.32%, and 54.6% respectively. It was concluded that sediment yield reduction by applying terracing was more effective than other conservation measures for affected sub-basins. The surface water potential of the watershed varies spatially from sub-basin to sub-basin, and the mean monthly surface water potential of the watershed is 33 million cubic meters. These findings can help decision-makers to develop appropriate strategies to minimize the erosion rate from erosion hotspot areas and to allocate the watershed water potential for different types of water demands. Strip planting, terracing, or contour farming may be necessary on chosen hotspot erosion sites to reduce the effect of slopes on surface runoff flow velocity and sediment transport capacity.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3