Optimal Confidence Regions for Weibull Parameters and Quantiles under Progressive Censoring

Author:

Fernández Arturo J.1ORCID

Affiliation:

1. Departamento de Matemáticas, Estadística e Investigación Operativa and Instituto de Matemáticas y Aplicaciones (IMAULL), Universidad de La Laguna (ULL), 38071 Santa Cruz de Tenerife, Spain

Abstract

Confidence regions for the Weibull parameters with minimum areas among all those based on the Conditionality Principle are constructed using an equivalent diffuse Bayesian approach. The process is valid for scenarios involving standard failure and progressive censorship, and complete data. Optimal conditional confidence sets for two Weibull quantiles are also derived. Simulation-based algorithms are provided for computing the smallest-area regions with fixed confidence levels. Importantly, the proposed confidence sets satisfy the Sufficiency, Likelihood and Conditionality Principles in contrast to the unconditional regions based on maximum likelihood estimators and other insufficient statistics. The suggested perspective can be applied to parametric estimation and hypothesis testing, as well as to the determination of minimum-size confidence sets for other invariantly estimable functions of the Weibull parameters. A dataset concerning failure times of an insulating fluid is studied for illustrative and comparative purposes.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference39 articles.

1. On asymptotics of maximum likelihood and related estimators based on Type II censored data;Bhattacharyya;J. Am. Stat. Assoc.,1985

2. Asymptotically chi-squared distributed tests of normality for Type II censored samples;LaRiccia;J. Am. Stat. Assoc.,1986

3. Inference based on Type II censored samples;Schneider;Biometrics,1986

4. Highest posterior density estimation from multiply censored Pareto data;Stat. Pap.,2008

5. E-Bayesian estimation for the Burr type XII model based on type-2 censoring;Jaheen;Appl. Math. Model.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3