Vector Auto-Regression-Based False Data Injection Attack Detection Method in Edge Computing Environment

Author:

Chen Yi,Hayawi KadhimORCID,Zhao Qian,Mou Junjie,Yang Ling,Tang Jie,Li Qing,Wen HongORCID

Abstract

With the wide application of advanced communication and information technology, false data injection attack (FDIA) has become one of the significant potential threats to the security of smart grid. Malicious attack detection is the primary task of defense. Therefore, this paper proposes a method of FDIA detection based on vector auto-regression (VAR), aiming to improve safe operation and reliable power supply in smart grid applications. The proposed method is characterized by incorporating with VAR model and measurement residual analysis based on infinite norm and 2-norm to achieve the FDIA detection under the edge computing architecture, where the VAR model is used to make a short-term prediction of FDIA, and the infinite norm and 2-norm are utilized to generate the classification detector. To assess the performance of the proposed method, we conducted experiments by the IEEE 14-bus system power grid model. The experimental results demonstrate that the method based on VAR model has a better detection of FDIA compared to the method based on auto-regressive (AR) model.

Funder

Sichuan Science and Technology Program

Zayed University

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference52 articles.

1. Smart-grid security issues

2. Smart grid security technology;Metke;Proceedings of the Innovative Smart Grid Technologies (ISGT),2010

3. Smart grid security: Attacks and defenses;Gusrialdi,2019

4. Securing the Smart Grid: Next Generation Power Grid Security;Flick,2010

5. Power System Real-Time Monitoring by Using PMU-Based Robust State Estimation Method

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3