Numerical Modelling of an Innovative Conical Pile Head Breakwater

Author:

Sathyanarayana Arunakumar HunasanahallyORCID,Suvarna Praveen S.ORCID,Umesh Pruthviraj,Shirlal Kiran G.ORCID,Bihs HansORCID,Kamath ArunORCID

Abstract

When moderate wave activity at the shoreline is acceptable, pile breakwaters can serve as an alternative to conventional breakwaters. Increasing the size of the pile breakwater in the vicinity of the free surface increases the hydraulic efficiency, as most of the wave energy is concentrated around the free surface. Therefore, a conical pile head breakwater (CPHB) is proposed in the present study by gradually widening the diameter of the piles towards the free surface. Using the open-source computational fluid dynamics (CFD) model REEF3D, the transmission, reflection, and dissipation characteristics of the CPHB with monochromatic and irregular waves are examined. The investigation is carried out for both perforated and non-perforated CPHBs using monochromatic waves, and the numerical results are validated using experimental data. Further, optimally configured non-perforated and perforated CPHBs are investigated numerically by subjecting them to irregular waves using the Scott–Wiegel spectrum. The wave attenuation characteristics of the CPHBs are found to be better with irregular waves compared to monochromatic waves. With irregular waves, the minimum transmission coefficients for non-perforated and perforated CPHBs are 0.36 and 0.34, respectively. Overall, the CPHB appears to be a potential solution for coastal protection.

Funder

Ministry of Education, Government of India

Norwegian Research Infrastructure Services

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using piles for wave reduction and coastal protection: A review;Regional Studies in Marine Science;2024-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3