Population Dynamics of Wild Mongolian Gerbils: Quadratic Temperature Effects on Survival and Density-Dependent Effects on Recruitment

Author:

Liu Wei,Deng Ke

Abstract

It has been hypothesized that animal populations respond nonlinearly to the environment, and such responses are important to understand the effects of climate change population dynamics of small mammals in arid environments at northern latitudes. The aim of this study was to test the following hypotheses: (1) that small rodent populations increase as their semiarid habitat conditions improve from low to intermediate levels of temperature or precipitation, and decline beyond the optimum climate because of decreased survival, and (2) that increased population density would result in stronger negative effects on recruitment than on survival. A wild population of Mongolian gerbils (Meriones unguiculatus), a granivorous rodent distributed in Inner Mongolia, China, was live-trapped half-monthly between April and October from 2014 to 2017 and the effects of climate and density on their apparent survival probabilities and recruitment rates were estimated using mark-recapture methods. Increased temperatures initially had a positive effect on population growth rates, and then had negative effects on population growth rates primarily, which was mediated by quadratic effects on survival probabilities, further supporting the optimum habitat hypothesis. Moreover, the increases in temperature had a positive effect on the recruitment of gerbils, whereas population density had a more markedly negative effect on recruitment than on survival. The results of this study suggested that the density-dependent feedback to recruitment may be a primary regulatory mechanism of small mammal populations, and the complex responses of populations to temperature, which is a limiting ecological factor, may raise concerns for the fate of populations of small mammals at northern latitudes, in view of the predicted global climate change scenarios.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3