Reinforcement Learning for Generating Secure Configurations

Author:

Dass ShuvalaxmiORCID,Siami Namin AkbarORCID

Abstract

Many security problems in software systems are because of vulnerabilities caused by improper configurations. A poorly configured software system leads to a multitude of vulnerabilities that can be exploited by adversaries. The problem becomes even more serious when the architecture of the underlying system is static and the misconfiguration remains for a longer period of time, enabling adversaries to thoroughly inspect the software system under attack during the reconnaissance stage. Employing diversification techniques such as Moving Target Defense (MTD) can minimize the risk of exposing vulnerabilities. MTD is an evolving defense technique through which the attack surface of the underlying system is continuously changing. However, the effectiveness of such dynamically changing platform depends not only on the goodness of the next configuration setting with respect to minimization of attack surfaces but also the diversity of set of configurations generated. To address the problem of generating a diverse and large set of secure software and system configurations, this paper introduces an approach based on Reinforcement Learning (RL) through which an agent is trained to generate the desirable set of configurations. The paper reports the performance of the RL-based secure and diverse configurations through some case studies.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference23 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BSDN-HMTD: A blockchain supported SDN framework for detecting DDoS attacks using deep learning method;Egyptian Informatics Journal;2024-09

2. RL and Fingerprinting to Select Moving Target Defense Mechanisms for Zero-Day Attacks in IoT;IEEE Transactions on Information Forensics and Security;2024

3. Misconfiguration of Cluster and IoT Systems Recovery: Extended Experiments;Communications in Computer and Information Science;2024

4. Self-Healing Misconfiguration of Cloud-Based IoT Systems Using Markov Decision Processes;Proceedings of the 13th International Conference on Cloud Computing and Services Science;2023

5. Comparative Analysis of Routing Schemes Based on Machine Learning;Mobile Information Systems;2022-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3