An Efficient Hidden Markov Model with Periodic Recurrent Neural Network Observer for Music Beat Tracking

Author:

Song GuangxiaoORCID,Wang Zhijie

Abstract

In music information retrieval (MIR), beat tracking is one of the most fundamental tasks. To obtain this critical component from rhythmic music signals, a previous beat tracking system of hidden Markov model (HMM) with a recurrent neural network (RNN) observer was developed. Although the frequency of music beat is quite stable, existing HMM based methods do not take this feature into account. Accordingly, most of hidden states in these HMM-based methods are redundant, which is a disadvantage for time efficiency. In this paper, we proposed an efficient HMM using hidden states by exploiting the frequency contents of the neural network’s observation with Fourier transform, which extremely reduces the computational complexity. Observers that previous works used, such as bi-directional recurrent neural network (Bi-RNN) and temporal convolutional network (TCN), cannot perceive the frequency of music beat. To obtain more reliable frequencies from music, a periodic recurrent neural network (PRNN) based on attention mechanism is proposed as well, which is used as the observer in HMM. Experimental results on open source music datasets, such as GTZAN, Hainsworth, SMC, and Ballroom, show that our efficient HMM with PRNN is competitive to the state-of-the-art methods and has lower computational cost.

Funder

National Key Research and Development program of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3