Droughts Are Not the Likely Primary Cause for Abies sibirica and Pinus sibirica Forest Dieback in the South Siberian Mountains

Author:

Tchebakova Nadezhda M.ORCID,Parfenova Elena I.,Bazhina Elena V.,Soja Amber J.,Groisman Pavel Ya.ORCID

Abstract

Background. Since the mid-20th century, massive dieback of coniferous forests has been observed in the temperate and boreal zones across North America and Northern Eurasia. The first hypotheses explaining forest dieback were associated with industrial air pollution (acid rain). At the end of the century, new hypotheses emerged that supported critical climate-induced aridization to explain forest dieback. Many studies were based on the SPEI (Standardized Precipitation Evapotranspiration Index) drought index. Our goals were to investigate if the SPEI drought index was a suitable metric to reflect drought conditions in wet and moist dark-needled forests in the South Siberian Mountains (Mts) and if droughts trigger the dieback of those forests. Methods. We calculated the SPEI drought index, the annual moisture index AMI, potential evapotranspiration PET, and water balance dynamics for the period 1961–2019 for four transects in the South Siberian Mts. where decline/dieback of dark-needled Siberian pine and fir forests were identified in situ. Climate data from nine weather stations located at lower and upper elevations of each transect were used to calculate climatic index dynamics for the 1961–2019 period to identify dry and wet phases of the period. Results. Our findings showed that climatic moisture/dryness indices have rarely gone down to high risk levels during the last 60 years (1961–2019). AMI did not reach the critical limit, 2.25, characteristic of the lower border for the dark-needled taiga. SPEI values < −1.5 represent drought stress conditions for dark-needled conifers at the lower border, and these conditions occurred 3–4 times during the 60-year period. However, the annual water balance stayed positive in those years in wet and moist forests at mid-to-high elevations. Trees are known to survive occasional (1–2) dry years. We found that dark-needled conifer dieback often occurs in wet years with plentiful rain rather than in drought years. We found forest dieback was associated with the westerlies that bring atmospheric pollution from the west at 50–56 N latitudes, where the air masses cross populated regions that have widespread industrial complexes. Conclusions. We concluded that the observed decline of dark-needled conifers at middle-to-high elevations across the South Siberia’s Mts was conditioned by several plausible causes, among which air pollution seems to be more credible, rather than dry climatic conditions, as cited in recent literature. Results are essential for understanding these ecosystems and others as our planet changes. Other causes and mechanisms should be further investigated, which would necessitate creating infrastructure that supports multi-disciplinary, inter-agency teamwork of plant physiologists, foresters, chemists, etc.

Funder

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

Forestry

Reference72 articles.

1. Climate and Montane Forests of Southern Siberia;Polikarpov,1986

2. Pinus Sibirica Forests of Siberia;Semechkin,1985

3. Potential change in forest types and stand heights in central Siberia in a warming climate

4. Dryland belt of Northern Eurasia: contemporary environmental changes and their consequences

5. Diagnostics of tree vitality and stand condition;Alekseev;Lesovedenie,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3