Research on Current Distribution Strategy Based on Interleaved Double Boost Converter

Author:

Wang Pengcheng,Li Chengchen,Liu Junqi,Cao Xingchen,Cui Haoran,Zhang Yi,Wang Rui

Abstract

In the new energy DC microgrid system, most of the new energy outputs DC power with a low voltage level and a large fluctuation range, which cannot be directly connected to the network. It needs to be boosted by a DC–DC converter, then connected to the power grid or supplied with a DC load. On the premise that the traditional DC–DC converter cannot meet the requirements of high-power applications, the interleaved dual boost converter (IDBC) has been widely used because of its low input current ripple, low device stress and high-power density. It is necessary to maintain the current balance of each phase of the converter during a heavy load and to improve the efficiency during a light load. This paper analyzes the working principle of the six-phase IDBC and reduces the high order model to the low order model according to the symmetry. Due to the current imbalance caused by the mismatch of the parasitic parameters of each phase, two current distribution strategies are designed for different operating. To balance the current of each phase when the converter is overloaded, the relationship between the phase current, parasitic parameters and duty cycle is analyzed based on the state space average method. The estimated parasitic parameters are used to obtain the duty cycle compensation of each phase to eliminate the current imbalance. In addition, to improve the overall efficiency of the converter when the converter connects with a light load, the optimal power distribution coefficient is obtained according to the parasitic parameters to achieve the optimization of the input power, so as to improve the efficiency of the converter. Finally, the simulation results verify the feasibility and effectiveness of the proposed control strategy.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3