CNN-Based Inspection Module for Liquid Carton Recycling by the Reverse Vending Machine

Author:

Lee Chang SuORCID,Lim Dong-WonORCID

Abstract

To protect our planet, the material recycling of domestic waste is necessary. Since the COVID-19 pandemic began, the volume of domestic waste has surged overwhelmingly, and many countries suffered from poor waste management. Increased demand for food delivery and online shopping led to a huge surge in plastic and paper waste which came from natural resources. To reduce the consumption of resources and protect the environment from pollution, such as that from landfills, waste should be recycled. One of precious recyclable materials from household waste is liquid cartons that are made of high-quality paper. To promote sustainable recycling, this paper proposes a vision-based inspection module based on convolutional neural networks via transfer learning (CNN-TL) for collecting liquid packaging cartons in the reverse vending machine (RVM). The RVM is an unmanned automatic waste collector, and thus it needs the intelligence to inspect whether a deposited item is acceptable or not. The whole processing algorithm for collecting cartons, including the inspection step, is presented. When the waste is inserted into the RVM by a user after scanning the barcode on the waste, it is relocated to the inspection module, and the item is weighed. To develop the inspector, an experimental set-up with a video camera was built for image data generation and preparation. Using the image data, the inspection agent was trained. To make a good selection for the model, 17 pretrained CNN models were evaluated, and DenseNet121 was selected. To access the performance of the cameras, four different types were also evaluated. With the same CNN model, this paper found the effect of the number of training epochs being set to 10, 100, and 500. In the results, the most accurate agent was the 500-epoch model, as expected. By using the RVM process logic with this model, the results showed that the accuracy of detection was over 99% (overall probability from three inspections), and the time to inspect one item was less than 2 s. In conclusion, the proposed model was verified for whether it would be applicable to the RVM, as it could distinguish liquid cartons from other types of paper waste.

Funder

University of Suwon

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3