Abstract
The usage of Electric Vehicles (EVs) for transportation is expected to continue growing, which opens up new possibilities for creating new smart grids. It offers a large-scale penetration of Fast Charging Stations (FCE) in a local utility network. A severe voltage fluctuation and increased active power loss might result from the inappropriate placement of the FCE as it penetrates the Distribution System (DST). This paper proposes a multi-objective optimisation for the simultaneous optimal allocation of FCEs, Distributed Generators (DGs), and Shunted Capacitors (SCs). The proposed Pareto dominance-based hybrid methodology incorporates the advantages of the Grey Wolf Optimiser and Particle Swarm Optimisation algorithm to minimise the objectives on 118 bus radial distribution systems. The proposed method outperforms some other existing algorithms in terms of minimising (a) active power loss costs of the distribution system, (b) voltage deviations, (c) FCE development costs, (d) EV energy consumption costs, and (e) DG costs, as well as satisfying the number of FCEs and EVs in all zones based on transportation and the electrical network. The simulation results demonstrate that the simultaneous deployment technique yields better outcomes, such as the active power loss costs of the distribution system being reduced to 53.21%, voltage deviations being reduced to 68.99%, FCE development costs being reduced to 22.56%, EV energy consumption costs being reduced to 19.8%, and DG costs being reduced to 5.1%.
Funder
Woosong University’s Academic Research Funding—2022
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Reference47 articles.
1. Amin, A., Tareen, W.U.K., Usman, M., Ali, H., Bari, I., Horan, B., Mekhilef, S., Asif, M., Ahmed, S., and Mahmood, A. A review of optimal charging strategy for electric vehicles under dynamic pricing schemes in the distribution charging network. Sustainability, 2020. 12.
2. A new prediction model of battery and wind-solar output in hybrid power system;Mirzapour;J. Ambient Intell. Humaniz. Comput.,2019
3. Electric vehicle battery charging/swap stations in distribution systems: Comparison study and optimal planning;Zheng;IEEE Trans. Power Syst.,2013
4. Coordinated charging of plug-in hybrid electric vehicles to minimize distribution system losses;Sortomme;IEEE Trans. Smart Grid,2010
5. Simultaneous allocation of electric vehicles’ parking lots and distributed renewable resources in smart power distribution networks;Amini;ISustain. Cities Soc.,2017
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献