Longitudinal Patterns in Fish Assemblages after Long-Term Ecological Rehabilitation in the Taizi River, Northeastern China

Author:

Wang Caiyan,Shao Jian,Ma Baoshan,Xie Jun,Li DapengORCID,Liu XiangjiangORCID,Huo Bin

Abstract

Fish assemblages inhabiting the Taizi River basin have been severely degraded by anthropogenic disturbances, which weaken the basin’s ecological function and limited revitalization of the northeast industrial base. Long-term ecological rehabilitation has been conducted to restore the fish fauna and improve habitat conditions. To explore fish distribution patterns and key factors after this ecological rehabilitation, a comprehensive and detailed survey of fish fauna was conducted twice in 2021 at 33 sampling sites in the Taizi River. A total of 50 fish species from 13 families were collected, and the dominant species were P. lagowskii, Z. platypus, C. auratus and P. parva. Compared to results reported over the last decade, the increasing trend in fish richness and the change in the longitudinal fish organization were detected. The abundance variation for P. lagowskii, Z. platypus, C. auratus, P. parva, R. ocellatus and H. leucisculus along the upstream to downstream axis contributed most to the fish distribution pattern. Species replacement and addition might have jointly caused the longitudinal changes in the fish fauna, but species replacement was the main underlying mechanism. The canonical correspondence analysis (CCA) results show that the fish structure pattern was mainly shaped by cultivated land coverage and urban land coverage. Our study provides reference sites for future fish-based bioassessment and implications for region-specific management in the Taizi River.

Funder

Finance Special Fund of the Ministry of Agriculture and Rural Affairs—“Fisheries Resources and Environment Survey in the Key Water Areas of Northeast China”

Science and Technology Project of Guizhou Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3