Effects of Drought Stress on Annual Herbaceous Plants under Different Mixed Growth Conditions in Desert Oasis Transition Zone of the Hexi Corridor

Author:

Gou Qianqian,Song Bing,Li Yuda,Xi Lulu,Wang Guohua

Abstract

Annual herbaceous plants are frequently layered under the artificial sand-fixing forest within the desert oasis transition zone of the Hexi Corridor. The effect of drought stress on annual herbaceous plants is of great significance to the restoration of artificial vegetation as well as the stability of the ecosystem in the desert oasis transition zone. Setaria viridis, Chloris virgata, Halogeton arachnoideus, and Bassia dasyphylla are the typical annual herbaceous plants that occur naturally in the Caragana korshinskii forest and were used as the research subject in this study. Concentration gradient tests were conducted under different mixed growth conditions: 0 (blank control group), 5, 10, and 15 C. korshinskii seeds, and different drought stress conditions: 0%, 2%, 5%, 10%, and 15%, in order to explore the interactive effects of drought stress on annual herbaceous plants. The results demonstrated that the germination percentage and germination rate of annual herbaceous plants was significantly affected by the number of C. korshinskii seeds (p < 0.05), whereby the germination effect was optimal when no C. korshinskii seeds were present. Furthermore, we found that the germination percentage and germination rate of the annual Gramineae was higher than that of the Chenopods. In the growth stage, the biomass and root-shoot ratio of the chenopods were significantly affected by the number of C. korshinskii seeds and drought stress (p < 0.05). We found that the biomass of annual herbaceous plants was the highest at 2% drought stress, and the root-shoot ratio displayed a positive correlation with an increase in drought stress. Notably, the survival rate of annual herbaceous plants was higher when grown in combination with five C. korshinskii seeds, thus indicating a positive interaction; in contrast, the survival rate decreased significantly when they were grown in combination with more than five C. korshinskii seeds, indicating a negative interaction. We observed a decreasing trend in root activity and chlorophyll content when annual herbaceous plants were grown in combination with an increasing number of C. korshinskii seeds and drought stress. The reduced root activity and decline in photosynthetic ability resulted in the inhibition of seedling growth. Furthermore, we found that the root activity and chlorophyll content of the Gramineae was ~1.3–2.0 times higher than that of the Chenopods, which may be the reason behind the lower survival rate of the chenopods.

Funder

National Natural Science Foundation of China

Shanxi Provincial Natural Science Foundation of China

Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference41 articles.

1. Scaling effects of proximate desertification drivers on soil nutrients in northeastern Tanzania;J. Arid Environ.,2008

2. Impact of Evolvement of Soil-plant System on Engineering of Mobile Sand Dunes Control;Sci. Silvae Sin.,2004

3. The effect of competition by adult zygophy1lum dumosum Bioss. on seeding of Artemisia herba-abta Asso in the Negev Desert of Israel;J. Ecol.,1971

4. Zhang, D.Y. (2000). Researches on Theoretical Ecological, Higher Education Press. (In Chinese).

5. The ecology of desert plants;Sci. Am.,1955

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3