Abstract
Groundwater is a vital water supply for local populations and ecosystems globally. With the continuous population growth, the anthropic pressure on groundwater is ever increasing, thus reducing the amount of available water resource. Yet, estimating the impact of anthropogenic activities on aquifer recharge is still a significant challenge for research, especially in basement aquifers. This study aims to improve the actual knowledge of deep drainage and deep aquifer recharge pathways and dynamics in the basement as affected by land use/land cover (LULC). The methodology used in this study accounted for hydraulic processes in soil layers within both unsaturated and saturated zones in an integrated approach. An experimental setup consisting of three (3) experimental plots, respectively under natural vegetation (NV), cropped millet (CM) and cropped groundnut (CG) on which deep drainage was monitored during the years 2020 and 2021. The results show significant differences between the LULC types after two years of implementation. Deep drainage is improved under CM and CG plots located in the central valley, as compared to the NV plot located in the ridge zone. Deep drainage is estimated at 8%, 24% and 25% of the annual rainfall, respectively for NV, CM and CG. The ratio between the recharge value obtained by the water table fluctuation (WTF) method and the deep drainage tends to 1 for the CM and CG plots, highlighting a rapid water transfer between unsaturated and saturated zones. The central valley, which seems to be a preferential recharge pathway, provides promising insights under specific conditions for the implementation of artificial recharge infrastructures.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Reference77 articles.
1. The United Nations World Water Development Report 2022: Groundwater: Making the Invisible Visible, 2022.
2. Seiler, K.P., and Gat, J.R. Groundwater Recharge from Run-Off. Infiltration and Percolation, 2007. Volume 55.
3. Leader, T.T., and Wijnen, M. Assessment of Groundwater Challenges & Opportunities in Support of Sustainable Development in Sub-Saharan Africa, 2018.
4. Review: Challenges and Opportunities for Sustainable Groundwater Management in Africa;Gaye;Hydrogeol. J.,2019
5. Lerner, D.S., and Issar, S.I. Aridity, Groundwater Recharge and Water Resources Management. Groundwater Recharge: A Guide to Recharge Measurement in Arid and Semiarid Regionsunderstanding and Estimating Natural Recharge, 1990.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献