Enhancement of Dye Separation Performance of Eco-Friendly Cellulose Acetate-Based Membranes

Author:

Koriem Omneya A.,Kamel Alaa Mostafa,Shaaban Waleed,Elkady Marwa F.

Abstract

Many reasons have caused a worldwide water stress problem. Thus, the recycling of wastewater streams has been extensively studied. In this work, eco-friendly mixed matrix membranes (MMMs) were fabricated, characterized, and tested for the removal of two separate dyes from simulated waste streams. The environmentally friendly nano activated carbon (NAC) was extracted from water hyacinth to be impregnated as a membrane nano-filler to enhance the neat membrane performance. The extracted NAC was further studied and characterized. Cellulose acetate (CA)-based membranes were obtained by phase inversion and electrospinning mechanisms. All four synthesized blank and MMMs were characterized via scanning electron microscope (SEM) and contact angle to study their structure and hydrophilic nature, respectively. However, the membrane with optimum performance was further characterized using Fourier transfer infrared (FTIR) and X-ray diffraction (XRD). The four prepared cast and electro-spun, blank, and mixed matrix CA-based membranes showed an acceptable performance in the removal and selectivity of methylene blue (MB) dye over Congo red (CR) dye with a removal percentage ranging from 31 to 70% depending on the membrane used. It was found that the CA/NAC hybrid nanofiber membrane possessed the highest removal efficiency for MB, where the dye concentration declined from 10 to 2.92 mg/L. In contrast, the cast blank CA membrane showed the least removal percentage among the synthesized membranes with only 30% removal. As a result, this paper suggests the use of the CA/NAC hybrid membrane as an alternative and cost-effective solution for MB dye removal.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3