Abstract
The parabolic trough collector provides an extensive range of solar heating and electricity production applications in solar power plants. The receiver tube of the parabolic trough collector has a vital role in enhancing its performance by using different inserts inside it. In the present work, outdoor experimental tests were conducted to study the performance of a small-scale parabolic trough collector equipped with a centrally placed rotating helical shaft. Three cases were studied: a parabolic trough collector without helical shaft insert, a parabolic trough collector with stationary helical shaft insert, and a parabolic trough collector with a rotating helical shaft insert. The experiments are performed for different shaft rotational speeds (4, 11, and 21 RPM) and various flow rates (0.5, 1, 1.5, 2, and 2.5 LPM) of water as a heat transfer fluid. The fluid flow and heat transfer parameters (friction factor, Reynolds number, Nusselt number, and thermal enhancement factor) and performance parameters (thermal, overall, and exergetic efficiencies) are studied. The results indicated that the helical shaft insert had increased the required pumping power for the same flow rate. However, the parabolic trough collector thermal performance has enhanced with the shaft rotational speed. For all cases, the parabolic trough collector efficiency increases with the flow rate of the heat transfer fluid, but the percentage enhancement in efficiency decreases. Using a shaft rotational speed of 21 RPM and heat transfer fluid flow rates of 0.5 LPM leads to maximum thermal efficiency enhancement and a maximum friction factor ratio of 46.47% and 7.7 times, respectively, compared to plain tube. A comparison based on the same pumping power (thermal enhancement factor) shows that the maximum enhancement occurs at a flow rate of 1 LPM, and the efficiency enhancement is about 37% at a shaft rotational speed of 21 RPM. From an economic point of view, using a rotating helical shaft produces the lower annual cost of useful heat per kWh.
Funder
Mansoura University, Egypt
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献