Inundation Depth Shape Phenotypic Variability of Phragmites australis in Liaohe Estuary Wetland, Northeast China

Author:

Cui Panpan,Su Fangli,Zhou Fang

Abstract

Inundation shifts plant growth, species diversity and ecosystem stability, but it remains unclear how inundation depth shapes the phenotypic variability of clonal plants in an estuary wetland. To reveal the response of clonal plant populations to inundation depth, we calculated the variation of Phragmites australis using shoot height, leaf length, leaf width, leaf biomass and panicle length in the Liaohe estuary wetland. Reproductive allocation was defined by the ratio of panicle length to shoot height. Linear regression showed that shoot height, leaf length, leaf width, leaf biomass and panicle length were negatively correlated with inundation depth, while the ratio of panicle length to shoot height was negatively correlated with inundation depth (p < 0.0001). Based on data regarding the statistical differences of plant phenotypic traits among P. australis, we recognized populations had generated variation differentiation. Compared with other functional traits, the coefficient of variation of leaf-related traits were at a high level. Therefore, leaf parameters would be the most suitable, and they increased the area and weight to support the action of plants during floods. Multivariate statistical analysis suggested that P. australis populations in the Liaohe estuary wetland were divided into two phenotypic clusters, consistent with geographical distance and morphological similarity. Our results provide a novel perspective on the ecological strategy of cloned plants under inundation change and offer theories for the conservation and restoration of estuarine wetland ecosystems.

Funder

National Key Research and Development Program of China

“Xingliao Talents Plan” science and technology innovation leading talents project of Liaoning Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3