Mechanical Properties and Drying Shrinkage of Alkali-Activated Coal Gangue Concrete

Author:

Zhao Yanbing,Yang CaiqianORCID,Qu Feng,Li Kefeng,Yang Jing,Wu Zhiren

Abstract

The feasibility of composite-activated coal gangue (CACG) as the primary cementitious material for concrete was experimentally studied in this paper. The effects of concrete strength grade on slump and slump flow, compressive strength, splitting tensile strength, axial compressive strength, elastic modulus, and drying shrinkage of alkali-activated coal gangue concrete (AACGC) were experimentally investigated. Experimental results indicated that the slump and slump flow of the AACGC were smaller than that of ordinary Portland cement concrete (OPCC). The mechanical properties of the AACGC were superior to those of the OPCC. The compressive strength, splitting tensile strength, axial compressive strength, and elastic modulus of the AACGC were 1.17 times, 1.04 times, 1.47 times, and 1.04 times those of the OPCC, respectively. With the increase in concrete strength grade, the mechanical properties of the AACGC have gradually increased. The difference in failure modes of axial compressive strength between the AACGC and OPCC was analyzed. Moreover, the empirical formulas of the elastic modulus and compressive strength for the OPCC in various regions codes were summarized, and found that the empirical formula in GB 50010-2002 code and EN 1922 Eurocode 2 was also applicable to the AACGC. Finally, the mass-loss rate and drying shrinkage for the AACGC at different concrete strength grades were systematically analyzed, and a hyperbolic prediction model was proposed to reflect the drying shrinkage behavior of the AACGC.

Funder

National Natural Science Foundation of China

Nanjing International joint research and development project of China

National Key R & D Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3