Characterization of Intertidal Macrofaunal Communities of Two Sandy Beaches under Different Anthropogenic Pressures

Author:

Di Camillo Cristina GioiaORCID,Luzi Giorgia,Danial AfghanORCID,Di Florio Luciano,Calcinai BarbaraORCID,Lo Brutto SabrinaORCID,de Oliveira Jéssica Luana Santana Mendonça,Fumanti Agnese,Cerrano CarloORCID

Abstract

The macrofauna in the intertidal zone of sandy beaches provides the trophic connectivity between land and sea, by linking microbiome, meiofauna, and megafauna, representing a food source for several terrestrial animals, including shorebirds and mammals. However, the macrozoobenthos in urbanised beaches is subjected to intense disturbances, such as breakwater barriers and tourism, which limit or impede the energy transfer from the marine to the terrestrial habitats. Because the information about diversity and abundance of the macrozoobenthos of the intertidal zone on the Mediterranean sandy coasts is scant, the main objective of this study is to increase the knowledge on the macrofauna living in this habitat and to identify taxa sensitive to cumulative human-induced stresses. To achieve this purpose, the structure and dynamics of macrozoobenthic communities from (1) a highly frequented beach characterized by breakwater barriers and (2) a marine protected area (MPA) in the Adriatic Sea were compared. The hypotheses that macrofauna composition and abundance changed in the two sites and over time were tested. Results highlighted that the macrozoobenthos in the MPA is mainly dominated by juvenile bivalves, which peaked from autumn to winter, and to a lesser extent by ostracods and mysids. Conversely, ostracods and the bivalve Lentidium mediterraneum (O. G. Costa, 1830) are particularly abundant in the highly disturbed beach, while the gastropod Tritia neritea (Linnaeus, 1758) increased only during summer. A possible combined effect of breakwater barriers and intense trampling has been theorized to explain the main differences between the two sites especially in the summer.

Funder

Torre Cerrano fund

Polytechnique University of Marche Research Funding

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3