Abstract
The LNG price is basically determined based on the oil price, but other than that, it is also determined by the influence of the method of LNG transportation; storage; processes; and political, economic, and geographical instability. Liquefied natural gas (LNG) may not reflect its market value if the destination of the purchase is restricted or the purchase contract includes a take-or-pay clause. Furthermore, it is difficult for the buyer to flexibly manage procurement, resulting in the decoupling of oil and natural gas prices. Therefore, as the LNG bunker price is expected to be more volatile than the marine bunker price in the future, shipping companies need to prepare countermeasures based on scientific forecasting techniques. This study aims to be the first to analyze the forecasting of short-term LNG bunker prices using recurrent neural network (RNN) models suitable for highly volatile data such as time series. Predictive analysis was performed using simple RNN, long short-term memory (LSTM), and gated recurrent unit (GRU) models, which effectively forecast time-series data, and the prediction performance of LSTM among the three models was excellent. LSTM had relatively excellent prediction performance of outliers and beyond. In addition, it was possible to effectively manage ship operating costs with improved forecasting in practice. Furthermore, this study contributes to establishing a systematic strategy for supervisors in global shipping companies, port authorities, and LNG bunkering companies.
Funder
National R&D Project, “Development of LNG Bunkering Operation Technologies Based on Op-eration System and Risk Assessment,” funded by the Ministry of Oceans and Fisheries, South Korea
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献