Abstract
The emission of nitrogen dioxide (NO2) caused by marine transportation has attracted worldwide environmental concerns. Two-dimensional (2D) black phosphorus (BP) is an emerging semiconductive material with the advantages of high electron mobility, a layer-dependent direct band gap and a large specific surface area. These properties ensure excellent potential in gas-sensing applications. In this work, BP quantum dots (QDs) are synthesized from commercial red phosphorus (RP) fine powder via the aqueous route. The BP QDs show uniform size distribution with an average size of 2.2 nm. They are employed to fabricate thin film gas sensors by aerial-assisted chemical vapor deposition. The microstructure, morphology and chemical composition are determined by various characterizations. The sensor performances are evaluated with the optimized response set to 100 ppm NO2 of 10.19 and a sensitivity of 0.48 is obtained. The gas sensor also demonstrates excellent repeatability, selectivity and stability. The fabricated thin film gas sensor assembled by BP QDs exhibits prospective applications in selective NO2 detection for marine gaseous pollutant monitoring and control.
Funder
International Science & Technology Innovation Program of the Chinese Academy of Agricultural Sciences
Scientific Research Funding Project of the Educational Department of Liaoning Province
Liaoning Applied Fundamental Research Project
Fundamental Research Funds for the Central Universities
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献