Abstract
Various regulations are being devised and implemented to prevent the environmental pollution that is threatening mankind. The International Maritime Organization has strengthened regulations on sulfur, a notorious pollutant, to prevent sea pollution. In addition, the production of LNG fueled ships is increasing. Among various metals, 9% nickel steel is widely used in the shipbuilding industry because it is advantageous in terms of material strength and cryogenic impact toughness. Various studies are being carried out to predict and prevent its distortion, caused by welding, in the design. To predict welding distortion during flux core arc welding, this study found a way to refine the parameters constituting the Goldak welding heat source. The optimal heat source parameters were derived by using BOP experiments, cross-sectional analysis, finite element analysis and global optimization algorithm. When re-analyzed and verified based on the values, an error of up to 6.3% was found between simulation results and experimental values. The process was improved by clarifying the objective function and reducing the range of candidate welding efficiencies during global optimization and the process efficiency was also improved by reducing analysis time with a simplified model. Therefore, it is thought that this study can contribute to the productivity improvement of LNG storage containers, helping engineers apply it immediately in the industrial field.
Funder
Ministry of Oceans and Fisheries
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献