Defense Strategy against False Data Injection Attacks in Ship DC Microgrids

Author:

Zeng HongORCID,Zhao YuanhaoORCID,Wang TianjianORCID,Zhang Jundong

Abstract

False Data Injection Attacks (FDIA) on ship Direct Current (DC) microgrids may result in the priority trip of a large load, a black-out, and serious accidents of ship collisions when maneuvering in the port. The key of the prevention of FDIA is the detection of and countermeasures to false data. In this paper, a defense strategy is developed to detect and mitigate against FDIA on ship DC microgrids. First, a DC bus voltage estimator is trained with an Artificial Neural Network (ANN) model. The error between the estimate value and the measure value is compared with a threshold generated from history data to detect the occurrence of FDIA. Combined with the correlation of artificial neural network inputs, bad data are identified and recovered. The method is tested under six cases with different network and physical disturbances in Matlab/Simulink. The results show that the method can identify and mitigate the FDIA effectively; the error of identifying FDIA by ANN is less than 0.5 V. Therefore, the deviation between the actual bus voltage and the reference voltage is less than 0.5 V.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference21 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3