A Framework for Optimal Sensor Placement to Support Structural Health Monitoring

Author:

Li Shen,Coraddu AndreaORCID,Brennan Feargal

Abstract

Offshore or drydock inspection performed by trained surveyors is required within the integrity management of an in-service marine structure to ensure safety and fitness for purpose. However, these physical inspection activities can lead to a considerable increase in lifecycle cost and significant downtime, and they can impose hazards for the surveyors. To this end, the use of a structural health monitoring (SHM) system could be an effective resolution. One of the key performance indicators of an SHM system is its ability to predict the structural response of unmonitored locations by using monitored data, i.e., an inverse prediction problem. This is highly relevant in practical engineering, since monitoring can only be performed at limited and discrete locations, and it is likely that structurally critical areas are inaccessible for the installation of sensors. An accurate inverse prediction can be achieved, ideally, via a dense sensor network such that more data can be provided. However, this is usually economically unfeasible due to budget limits. Hence, to improve the monitoring performance of an SHM system, an optimal sensor placement should be developed. This paper introduces a framework for optimising the sensor placement scheme to support SHM. The framework is demonstrated with an illustrative example to optimise the sensor placement of a cantilever steel plate. The inverse prediction problem is addressed by using a radial basis function approach, and the optimisation is carried out by means of an evolutionary algorithm. The results obtained from the demonstration support the proposal.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3