Underwater Image Classification Algorithm Based on Convolutional Neural Network and Optimized Extreme Learning Machine

Author:

Yang JunyiORCID,Cai Mudan,Yang Xingfan,Zhou ZhiyuORCID

Abstract

In order to deal with the target recognition in the complex underwater environment, we carried out experimental research. This includes filtering noise in the feature extraction stage of underwater images rich in noise, or with complex backgrounds, and improving the accuracy of target classification in the recognition process. This paper discusses our contribution to improving the accuracy of underwater target classification. This paper proposes an underwater target classification algorithm based on the improved flow direction algorithm (FDA) and search agent strategy, which can simultaneously optimize the weight parameters, bias parameters, and super parameters of the extreme learning machine (ELM). As a new underwater target classifier, it replaces the full connection layer in the traditional classification network to build a classification network. In the first stage of the network, the DenseNet201 network pre-trained by ImageNet is used to extract features and reduce dimensions of underwater images. In the second stage, the optimized ELM classifier is trained and predicted. In order to weaken the uncertainty caused by the random input weight and offset of the introduced ELM, the fuzzy logic, chaos initialization, and multi population strategy-based flow direction algorithm (FCMFDA) is used to adjust the input weight and offset of the ELM and optimize the super parameters with the search agent strategy at the same time. We tested and verified the FCMFDA-ELM classifier on Fish4Knowledge and underwater robot professional competition 2018 (URPC 2018) datasets, and achieved 99.4% and 97.5% accuracy, respectively. The experimental analysis shows that the FCMFDA-ELM underwater image classifier proposed in this paper has a greater improvement in classification accuracy, stronger stability, and faster convergence. Finally, it can be embedded in the recognition process of underwater targets to improve the recognition performance and efficiency.

Funder

National Key R&D Program of China

Key R&D Program of Zhejiang Province

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FishAI: Automated hierarchical marine fish image classification with vision transformer;Engineering Reports;2024-08-27

2. AI-Powered Trash Classification System for Lakes and Water Bodies Using Transfer Learning;2024 Third International Conference on Power, Control and Computing Technologies (ICPC2T);2024-01-18

3. ICESat-2 and Multispectral Images Based Coral Reefs Geomorphic Zone Mapping Using a Deep Learning Approach;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

4. Fine-Grained Fish Classification From Small to Large Datasets With Vision Transformers;IEEE Access;2024

5. Role of Preprocessing Algorithm in the Underwater Image Analysis;The Springer Series in Applied Machine Learning;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3