Abstract
Many studies have shown that the linear elastic fracture mechanics (LEFM) method based on the stress intensity factor range (ΔK) has limitations that cannot be ignored. Due to neglecting the influence of plastic deformation near the crack tip, LEFM shows apparent deviations in evaluating the fracture behaviour. Therefore, in this study, the crack tip opening displacement range (ΔCTOD) is chosen as an alternative to ΔK and based on the elastic–plastic fracture mechanics (EPFM) to develop a new fracture behaviour assessment approach for marine structures. Firstly, a ΔCTOD model based on the HRR (Hutchinson, Rice, and Rosengren) solution is proposed considering the crack closure effect. Secondly, a series of compact tension (CT) specimen crack growth experiments under constant amplitude loading is carried out. According to the experimental results, the prediction accuracy of the HRR model and traditional Irwin and Dugdale models is compared and analysed. The rationality of ΔCTOD as an alternative to ΔK is verified. The results show that ΔCTOD can describe the crack propagation behaviour well. The proposed HRR model shows better accuracy and a more comprehensive application range than the traditional models, which has a guiding significance for studying fracture behaviour for marine structural applications.
Funder
National Natural Science Foundation of China
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献