Design of a Full-Ocean-Depth Macroorganism Pressure-Retaining Sampler and Fluid Simulation of the Sampling Process

Author:

Liu Guangping,Jin Yongping,Peng Youduo,Liu Deshun,Wan Buyan

Abstract

Hadal seafloor organisms live under ultra-high pressure, in low temperatures, and other environments for a long time, which puts higher requirements on the structural design of deep-sea biological samplers. In this paper, we present a full-ocean-depth hydraulic suction macroorganism pressure-retaining sampling method, which actively samples seafloor macroorganisms by pumping and stabilizing the pressure inside the sampler using a pressure compensator. Firstly, the structure and working principle of the hydraulic suction macroorganism pressure-retaining sampler (HSMPS) were introduced. Then the flow field of the HSMPS sampling process was analyzed, and the velocity and pressure distribution of the flow field at different locations of the HSMPS were obtained. In response to the problem of the low viability of samples collected by deep-sea biological samplers, the changes in radial velocity and pressure at different positions of the sampler under different pumping flows were analyzed. Finally, the appropriate suction flow rate was selected based on the analysis results, and HSMPS suction tests and simulated sampling tests, under a 110 MPa high-pressure environment, were carried out using the developed HSMPS engineering prototype. The test results verify the feasibility of the HSMPS design, which will provide strong support for the deep abyssal seafloor sampling operation of the full-ocean-depth manned submersible.

Funder

Postgraduate Scientific Research Innovation Project of Hunan Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3