Imaging of Artificial Bubble Distribution Using a Multi-Sonar Array System

Author:

Bae Ho SeukORCID,Kim Won-KiORCID,Son Su-Uk,Park Joung-Soo

Abstract

Bubble clusters present in seawater can cause acoustic interference and acoustic signal distortion during marine exploration. However, this interference can also be used as an acoustic masking technique, which has significant implications for military purposes. Therefore, characterizing the distribution of bubble clusters in water would allow for the development of anti-detection technologies. In this study, a sea experiment was performed using a multi-sonar array system and a bubble-generating material developed by our research group to obtain acoustic signals from an artificial bubble cluster and characterize its distribution. The acquired acoustic data were preprocessed, and reverse-time migration (RTM) was applied to the dataset. For effective RTM, an envelope waveform was used to decrease computation time and memory requirements. The envelope RTM results could be used to effectively image the distribution characteristics of the artificial bubble clusters. Compared with acoustic Doppler current profiler data, the backscattering strength of the boundary of the imaged artificial bubble cluster was estimated to range between −30 and −20 dB. Therefore, the three-dimensional distribution characteristics of bubble clusters in the open sea can be effectively determined through envelope RTM. Furthermore, the data obtained from this study can be used as a reference for future studies.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference29 articles.

1. La Prairie, A.J.C. (1955). Method of Blasting. (2,699,117), U.S. Patent.

2. (2022, November 20). Wind Farm Noise Reduced by Air Bubble Curtain. Available online: https://www.engineerlive.com/content/wind-farm-noise-reduced-air-bubble-curtain.

3. Fessenden, R.A. (1920). Method and Apparatus for Sound Insulation. (1,348,828), U.S. Patent.

4. Direction of Commander, Naval Sea Systems Command (1995). Underwater Ship Husbandry Manual, Naval Sea Systems Command. S0600-AA-PRO-050.

5. Tests on Ventilation Control of PRAIRIE for Improving Acoustic Stealth Performance;Lee;J. Korea Inst. Mil. Sci. Technol.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3