First-Break Picking of Large-Offset Seismic Data Based on CNNs with Weighted Data

Author:

Yin Yuchen,Han Liguo,Zhang Pan,Lu Zhanwu,Shang Xujia

Abstract

Deep reflection seismic data are usually accompanied by large-offset data, and the accurate and rapid identification of the first arrivals of seismic records plays an important role in eliminating the effects of topography and other factors that increase with the increasing offsets. In this paper, we propose a method based on convolutional neural networks (CNNs) that can accurately identify the first arrivals of large-offset seismic data. A time window for linear dynamic correction was established to convert the raw seismic data into rectangular images so as to reduce the amount of invalid sample data and improve the training efficiency. In order to enhance the prediction effect of the far-offset first arrivals, we propose the strategy of adjusting the weight of the far-offset data to increase the weight of the far-offset data in the training dataset and, thus, to improve the first arrival accuracy. The manually picked first arrivals are used as labels and the input to the CNNs for training, and the full-offset first arrivals are the output. The travel time tomography velocity is modeled and compared based on the first arrivals obtained through manual picking, industrial software automatic picking, and CNN prediction. The results show that the application of CNNs to large-offset seismic datasets can help researchers to obtain the first arrivals at different offsets, while the inclusion of far-offset weights can effectively improve the modeling depth of the tomography inversion, and the accuracy of the results is high.

Funder

the National Natural Science Foundation of China

the Natural Science Foundation of Jilin Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference26 articles.

1. COCORP and the continental crust;Oliver;J. Geophys. Res. Solid Earth,1983

2. COCORP: New perspectives on the deep crust;Brown;Geophys. J. Int.,1987

3. The seismic reflection Moho beneath the United Kingdom and adjacent areas;Chadwick;Tectonophysics,1998

4. Canada’s LITHOPROBE Project (Collaborative, multidisciplinary geoscience research leads to new understanding of continental evolution);Clowes;Epis. J. Int. Geosci.,1999

5. Fine structure of the continental reflection Moho;Cook;Geol. Soc. Am. Bull.,2002

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3