Abstract
Algorithms combining CNN (Convolutional Neural Network) and super-pixel based smoothing have been proposed in recent years for Synthetic Aperture Radar (SAR) image classification. However, the smoothing may lead to the damage of details. To solve this problem the feature fusion strategy is utilized, and a novel adaptive fusion module named Gated Channel Attention (GCA) is designed in this paper. In this module, the relevance between channels is embedded into the conventional gated attention module to emphasize the variation in contribution on classification results between channels of feature-maps, which is not well considered by the conventional gated attention module. A GCA-CNN network is then constructed for SAR image classification. In this network, feature-maps corresponding to the original image and the smoothed image are extracted, respectively, by feature-extraction layers and adaptively fused. The fused features are used to obtain the results. Classification can be performed by the GCA-CNN in an end-to-end way. By the adaptive feature fusion in GCA-CNN, the smoothing of misclassification and the detail keeping can be realized at the same time. Experiments have been performed on one elaborately designed synthetic image and three real world SAR images. The superiority of the GCA-CNN is demonstrated by comparing with the conventional algorithms and the relative state-of-the-art algorithms.
Funder
National Natural Science Foundations of China
Department of Education Foundation of Anhui Province
Subject
General Earth and Planetary Sciences
Reference29 articles.
1. ImageNet classification with deep convolutional neural networks;Krizhevsky;Adv. Neural Inf. Process. Syst.,2012
2. He, K., Zhang, X., Ren, S., and Sun, J. (2016, January 27–30). Deep Residual Learning for Image Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA.
3. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., and Rabinovich, A. (2015, January 7–12). Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA.
4. Simonyan, K., and Zisserman, A. (2015, January 7–9). Very deep convolutional networks for large-scale image recognition. Proceedings of the International Conference on Learning Representations, San Diego, CA, USA.
5. Polarimetric SAR Image Classification Using Deep Convolutional Neural Networks;Zhou;IEEE Geosci. Remote Sens. Lett.,2016
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献