Compounded Impacts of Global Warming and Anthropogenic Disturbances on Snowmelt in Northern Baffin Island

Author:

He LimingORCID,White H. PeterORCID,Chen Wenjun

Abstract

Fugitive dust arising from mining operations in the Arctic can be a concern to surrounding communities. The Mary River Mine operation on northwest Baffin Island in the Qikiqtani region, Nunavut, is one example. Yet, the short and long-term impacts of fugitive dust remain poorly understood. Dust lowers snow albedo which can contribute to early snowmelt. This influences the spring snowmelt freshet period, significant to the land-atmosphere interactions, hydrology, ecology, and socioeconomic activities in the Arctic. Here, we map dust extents indicated by snow discoloration and examine for areas of early snowmelt using a 21-year MODIS time series snow cover product in 2000–2020. We found an episode of dust plume extended far beyond the reference dust sampler sites from where Nil dustfall is detected. A snow albedo decrease of 0.014 was seen more than 60 km away from the mine site. Incidents of early snowmelt existed extensively and progressively prior to the Mary River Mine operations; however, localized and even earlier snowmelt also appear around Mine’s operations; we estimated that the snow-off date was advanced by one week and three weeks for the background, and areas around the Mine facilities, respectively, during the 21-year period. Furthermore, the area increase in early snowmelt around the Mine facilities correlates to ore production growth. This study demonstrates rapid changes in early snowmelt beyond observed regional trends when additional drivers are introduced.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference59 articles.

1. (2022, December 09). Nunatsiaq News. Available online: https://nunatsiaq.com/stories/article/baffinland-exceeded-dust-impact-projections-for-3-straight-years-qia/.

2. Attribution of snowmelt onset in Northern Canada;Mioduszewski;J. Geophys. Res. Atmos.,2014

3. Radiative forcing by light-absorbing particles in snow;Skiles;Nat. Clim. Change,2018

4. Pan-Alpine glacier phenology reveals lowering albedo and increase in ablation season length;Fugazza;Remote Sens. Environ.,2022

5. A darker cryosphere in a warming world;Nat. Clim. Change,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3