Detection of Damaged Buildings Using Temporal SAR Data with Different Observation Modes

Author:

Kim MinhwaORCID,Park Sang-EunORCID,Lee Seung-JaeORCID

Abstract

Synthetic Aperture Radar (SAR) remote sensing has been widely used as one of the most effective tools for responding to earthquake disasters. In general, damaged-building detection with SAR data has been conducted based on change detection using temporal SAR data acquired in the same observation mode. However, it is not always possible to use SAR data obtained with the appropriate observation mode in unexpected events such as natural disasters. This study aims to detect earthquake-induced damaged buildings using temporal SAR data having different observation modes. We presented a contextual change analysis method to map damaged buildings based on novel textural features. This study was conducted using the bi-temporal Komapsat-5 data obtained in different polarization modes. Experimental results for the area severely damaged by the 2016 Kumamoto earthquake showed that the proposed textural analysis can improve detectability in building-damaged areas while maintaining low false alarm rates in agricultural areas. According to the grid-based accuracy analysis, the proposed method can successfully detect the damaged areas with a detection rate of about 72.5% and false alarms of about 6.8% even on challenging data sets.

Funder

Korea Aerospace Research Institute

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3