Clarifying Relationship between PM2.5 Concentrations and Spatiotemporal Predictors Using Multi-Way Partial Dependence Plots

Author:

Shi HaozeORCID,Yang NaisenORCID,Yang XinORCID,Tang HongORCID

Abstract

Atmospheric fine particles (PM2.5) have been found to be harmful to the environment and human health. Recently, remote sensing technology and machine learning models have been used to monitor PM2.5 concentrations. Partial dependence plots (PDP) were used to explore the meteorology mechanisms between predictor variables and PM2.5 concentration in the “black box” models. However, there are two key shortcomings in the original PDP. (1) it calculates the marginal effect of feature(s) on the predicted outcome of a machine learning model, therefore some local effects might be hidden. (2) it requires that the feature(s) for which the partial dependence is computed are not correlated with other features, otherwise the estimated feature effect has a great bias. In this study, the original PDP’s shortcomings were analyzed. Results show the contradictory correlation between the temperature and the PM2.5 concentration that can be given by the original PDP. Furthermore, the spatiotemporal heterogeneity of PM2.5-AOD relationship cannot be displayed well by the original PDP. The drawbacks of the original PDP make it unsuitable for exploring large-area feature effects. To resolve the above issue, multi-way PDP is recommended, which can characterize how the PM2.5 concentrations changed with the temporal and spatial variations of major meteorological factors in China.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3