Aerosol Retrieval Study from a Particulate Observing Scanning Polarimeter Onboard Gao-Fen 5B without Prior Surface Knowledge, Based on the Optimal Estimation Method

Author:

Fan Yizhe,Sun Xiaobing,Ti Rufang,Huang Honglian,Liu Xiao,Yu Haixiao

Abstract

To meet the demand for the aerosol detection of single-angle and multi-band polarization instrument containing short-wave infrared bands, an inversion algorithm that makes full use of multi-band intensity and polarization information is proposed based on optimal estimation theory. This method uses the polarization information in the short-wave infrared band to perform surface and atmosphere decoupling without a prior information on the surface. This obtains the initial value of the aerosol, and then it uses the scalar information to obtain the final result. Moreover, the multi-band information of the instrument is used for decoupling the surface and atmospheric information, which avoids the inversion error caused by the untimely update of the surface reflectance database and the error of spatio-temporal matching. The measured data of the Particulate Observing Scanning Polarimeter (POSP) are used to test the proposed algorithm. Firstly, to verify the effectiveness of the algorithm under different surface conditions, four regions with large geographical differences (Beijing, Hefei, Baotou, and Taiwan) are selected for aerosol optical depth (AOD) inversion, and they are compared with the aerosol robotic network (AERONET) products of the nearby stations. The validation against the AERONET products produces high correlation coefficients of 0.982, 0.986, 0.718, and 0.989, respectively, which verifies the effectiveness of the algorithm in different regions. Further, we analyzed the effectiveness of the proposed algorithm under different pollution conditions. Regions with AOD >0.7 and AOD < 0.7 are screened by using the AOD products of the Moderate-Resolution Imaging Spectroradiomete (MODIS), and the AOD of the corresponding region is inverted using POSP data. It was found to be spatially consistent with the MODIS products. The correlation coefficient and root mean square error (RMSE) in the AOD high region were 0.802 and 0.217, respectively, and 0.944 and 0.022 in the AOD low region, respectively, which verified the effectiveness of the proposed algorithm under different pollution conditions.

Funder

Aerospace Science and Technology Innovation Application Research Project

China High-resolution Earth Observation System

China Center for Resource Satellite Data and Applications Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3