Protective Effects of Theaflavins and Epigallocatechin Gallate against ZnO-NP-Induced Cell Apoptosis In Vitro

Author:

Shan Xiaodong,Chen Feifei,Lin Huikang,Zhang Hangjun,Zhong Yuchi,Liu ZhiquanORCID,Li Yan

Abstract

Zinc oxide nanoparticles (ZnO-NPs) are commonly used in various commercial applications, causing toxic effects on organisms and destroying biodiversity, but information about their protective approaches remains unknown. This study aims to evaluate the protective effects of theaflavins (TFs) and epigallocatechin gallate (EGCG) against ZnO-NP-induced cytotoxicity in rat tracheal epithelial (RTE) cells. Herein, RTE cells were exposed to 100 μg/L ZnO-NPs for 12 h, then treated with 0, 10, 100, and 1000 μg/L TFs or EGCG for another 12 h; subsequently, oxidative stress, inflammation, and apoptosis analyses were conducted. Relative to the control groups, TFs and EGCG treatment significantly inhibited the levels of reactive oxygen species and malondialdehyde content. Exposure to 1000 μg/L TFs or EGCG treatment downregulated cytochrome C gene expression levels by 59.10% and 77.27%; Caspase 3 gene expression by 50.03% and 60.01%; Caspase 8 gene expression by 45.11% and 55.57%; and Caspase 9 gene expression by 51.33% and 66.67%, respectively. Meanwhile, interleukin 1β and interleukin 6, tumor necrosis factor-α, and the other inflammatory chemokines such as C-C motif chemokine 2 and C-X-C motif chemokine 8 expression were all gradually rescued after the addition of TFs or EGCG. These results imply that TFs or EGCG possibly ameliorated ZnO-NPs-induced toxicity through antiapoptotic, antioxidant, and anti-inflammatory effects. This study provides novel approaches which mitigate the emerging nanoparticle pollutant toxicity in organisms, which may potentially slow down the destruction of biodiversity.

Funder

the Projects of Zhejiang Provincial Public Welfare Technology Application Research

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3